140 research outputs found

    Pan-European backcasting exercise, enriched with regional perspective, and including a list of short-term policy options

    Get PDF
    This deliverable reports on the results of the third and final pan-European stakeholder meeting and secondly, on the enrichment with a Pilot Area and regional perspective. The main emphasis is on backcasting as a means to arrive at long-term strategies and short-term (policy) actions

    Climate change mainstreaming in agriculture: Natural water retention measures for flood and drought risk management

    Get PDF
    Many EU policies contribute to reducing flood and drought risks, which are projected to increase in many areas due to climate change. The EU Water Blueprint encourages a policy switch from dams, reservoirs, and other grey infrastructure to supporting natural water retention measures, or green infrastructure. Our estimates show that the costs of this switch can be significant for on-farm ponds; however, conservation tillage and (to a lesser extent) shelterbelts appear to be cost-competitive with reservoirs for storing water in the landscape. If the co-benefits, especially climate change mitigation, the reduction of land-use degradation and biodiversity, are taken into account, the cost advantage of these measures increases

    FAST PREDETERMINED EQUILIBRIUM DYNAMICS APPLIED TO MAGNETIC SYSTEMS

    Full text link
    In this paper, a fast algorithm for implementing the method [1] is proposed for consider-ation. Its application to the problem of modeling microscopic magnetic dynamics is also shown

    Report on perceived policy needs and decision contexts

    Get PDF
    Adaptation to climate change is a new challenge for existing institutions and decision-making processes. In order to assess what form this challenge takes for decision-makers, we conducted interviews and a policy review to determine the perceived policy needs in Austria, Finland, France, Italy, Poland, Romania, Spain and the United Kingdom. In each country, interviews are conducted at the national level and the sub-national (state) level if the national level is not sufficiently active in adaptation planning yet. We focus on general adaptation policy as well as specific sectors for each country, in line with the distribution of MEDIATION case studies. Different countries are at different stages of developing adaptation policy, but the underlying needs are similar across them. We group the needs into nine categories: inter-agency coordination, multi-level governance, mainstreaming, awareness-raising, coping with uncertainty, research needs, tools and information access, financial and human resources, and political commitment. We also look at suggestions for the EU's role in coordinating adaptation policy

    ВивчСння полісахаридного складу Ρ‚Ρ€Π°Π²ΠΈ Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ, які Π·Ρ€ΠΎΡΡ‚Π°ΡŽΡ‚ΡŒ Π½Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠŸΡ€ΠΈΠΊΠ°Ρ€ΠΏΠ°Ρ‚Ρ‚Ρ

    Get PDF
    Medicines of plant origin containing polysaccharides are used in pharmaceutical practice since they exhibit a wide spectrum of thepharmacological activity. Species of the Alchemilla L. genus of the Rosaceae family are of important scientific and practical importance; they contain different groups of biologically active substances (BAS), including phenolic compounds and polysaccharides. The lack of information in the literature on the quantitative content of polysaccharides in this raw material indicates the topicality of research in this direction. Aim. To isolate and study the polysaccharide composition of the herb of the Alchemilla L. genus species growing in the territory of the Precarpathian region. Materials and methods. To isolate polysaccharide fractions and study their monomer composition, we used herb of 6 species of the Alchemilla L. genus (Alchemilla (A.) flabellata Buser., A. subcrenata Buser., A. phegophila Juz., A. microdonta Juz., A. hebescens Juz., A. turkulensis PawΡ–.) harvested during the mass flowering phase in various areas of the Ivano-Frankivsk region within 2020-2021. The quantitative content of polysaccharide fractions in the raw material studied was determined by the gravimetric method after successive extraction of the raw material with purified water R, hydrochloric acid solution and sodium hydroxide solution, followed by precipitation with 96 % ethanol R. The qualitative monomer composition of polysaccharides was determined by the ascending paper chromatography(PC) and thin-layer chromatography (TLC) in different solvent systems compared to authentic samples of neutral and acidic monosaccharides. Results and discussion. It was found that the total content of polysaccharide fractions in the herb of the Alchemilla species studied ranged from 7.73 % to 15.35 %, depending on the type of Alchemilla species. The yield of water-soluble polysaccharides (WSP) ranged from 2.62 % to 5.49 %, pectin substances (PS) – from 1.41 % to 2.13 %, hemicellulose (HC) A – from 0.45 % to 2.96 % and HC B – from 2.51 % to 6.44 %. The maximum amount of WSP and HC A was observed in the herb of Alchemilla turkulensis PawΕ‚. (5.49 % and 2.96 %, respectively), the highest amount of PS and HC B was detected in the herb of Alchemilla phegophila Juz. (2.13 % and 6.44 %, respectively). The composition of monosaccharides was determined by the methods of PC and TLC compared to authentic samples. Glucose and arabinose were identified in the hydrolysates of the WSP of the herb of the Alchemilla L. genus species. The monomer composition of PS of the raw material studied was represented by glucose, arabinose and galactose. Glucose, galactose and xylose were found in the hydrolyzates of HC A fraction; glucose, galactose, arabinose, xylene, rhamnose, glucuronic and galacturonic acids were identified in HC B fraction. Conclusions. For the first time, polysaccharide complexes have been isolated from 6 species of the Alchemilla L. genus harvested in different areas of the Ivano-Frankivsk region. The monomer composition of sugars has been determinedby the methods of PC and TLC compared to authentic samples of monosaccharides in the hydrolyzates of WSP, PS, HC A and B fractions of species of the Alchemilla L. genus growing in the territory of Precarpathian region. The research results obtained are of practical importance for the further study of the pharmacological activity of the raw material studied and can be used in the development of quality control methods for the medicinal plant raw material and substances obtained from it.Π’ фармацСвтичСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ лСкарствСнныС срСдства Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ происхоТдСния, содСрТащиС полисахариды, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ эти ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρ‹ ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‚ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр фармакологичСской активности. Π’Π°ΠΆΠ½ΠΎΠ΅ Π½Π°ΡƒΡ‡Π½ΠΎ-практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π²ΠΈΠ΄Ρ‹ Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ° (Alchemilla L.) сСмСйства Π ΠΎΠ·ΠΎΠ²Ρ‹Π΅ (Rosaceae), содСрТащиС Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π³Ρ€ΡƒΠΏΠΏΡ‹ биологичСски Π°ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… вСщСств (БАВ), срСди ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… соСдинСния Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ происхоТдСния ΠΈ полисахариды. ΠžΡ‚ΡΡƒΡ‚ΡΡ‚Π²ΠΈΠ΅ Π² Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… источниках ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ количСствСнном содСрТании полисахаридов Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΡ‹Ρ€ΡŒΠ΅ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ провСдСния исслСдований Π² Π΄Π°Π½Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΈ исслСдованиС полисахаридного состава Ρ‚Ρ€Π°Π²Ρ‹ Π²ΠΈΠ΄ΠΎΠ² Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ°, ΠΏΡ€ΠΎΠΈΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ ΠŸΡ€ΠΈΠΊΠ°Ρ€ΠΏΠ°Ρ‚ΡŒΡ. ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ способы. Для выдСлСния полисахаридных Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ ΠΈ исслСдования ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ состава использовали Ρ‚Ρ€Π°Π²Ρƒ Π²ΠΈΠ΄ΠΎΠ² Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ°, Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½ΡƒΡŽ Π² Ρ„Π°Π·Ρƒ массового цвСтСния Π² Ρ€Π°Π·Π½Ρ‹Ρ… Ρ€Π΅Π³ΠΈΠΎΠ½Π°Ρ… Ивано-Ѐранковской области Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 2020 – 2021 Π³Π³. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ содСрТаниС Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ полисахаридов Π² исслСдуСмом ΡΡ‹Ρ€ΡŒΠ΅ опрСдСляли гравимСтричСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ послС ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ экстрагирования ΡΡ‹Ρ€ΡŒΡ ΠΎΡ‡ΠΈΡ‰Π΅Π½Π½ΠΎΠΉ Π²ΠΎΠ΄ΠΎΠΉ Π , раствором хлористоводородной кислоты ΠΈ раствором натрия гидроксида с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ осаТдСниСм 96% этанолом P. ΠšΠ°Ρ‡Π΅ΡΡ‚Π²Π΅Π½Π½Ρ‹ΠΉ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ состав полисахаридов устанавливали ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ восходящСй Π±ΡƒΠΌΠ°ΠΆΠ½ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π‘Π₯) ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ тонкослойной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ (Π’Π‘Π₯) Π² Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… систСмах растворитСлСй ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с достовСрными ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ кислых моносахаров. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΈ обсуТдСниС. УстановлСно, Ρ‡Ρ‚ΠΎ Π² Ρ‚Ρ€Π°Π²Π΅ исслСдуСмых Π²ΠΈΠ΄ΠΎΠ² ΠΌΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠΈ ΠΎΠ±Ρ‰Π΅Π΅ содСрТаниС полисахаридных Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ колСбалось ΠΎΡ‚ 7,40 Π΄ΠΎ 15,35 % Π² зависимости ΠΎΡ‚ Π²ΠΈΠ΄Π° ΡΡ‹Ρ€ΡŒΡ. Π’Ρ‹Ρ…ΠΎΠ΄ водорастворимых полисахаридов (Π’Π ΠŸΠ‘) составлял 2,15 - 5,49 %, ΠΏΠ΅ΠΊΡ‚ΠΈΠ½ΠΎΠ²Ρ‹Ρ… вСщСств (ΠŸΠ’) - 1,41 - 2,13 %, Π³Π΅ΠΌΠΈΡ†Π΅Π»Π»ΡŽΠ»ΠΎΠ·Ρ‹ (Π“Π¦) А - 0,15 - 2,96 %, Π“Π¦ Π‘ - 2 ,51 – 6,44 %. МаксимальноС количСство Π’Π ΠŸΠ‘ ΠΈ Π“Π¦ А наблюдали Π² Ρ‚Ρ€Π°Π²Π΅ ΠΌΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠΈ Ρ‚ΡƒΡ€ΠΊΡƒΠ»ΡŒΡΠΊΠΎΠΉ (5,49 % ΠΈ 2,96 % соотвСтствСнно), большС всСго ΠŸΠ’ ΠΈ Π“Π¦ Π‘ Π±Ρ‹Π»ΠΎ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½ΠΎ Π² Ρ‚Ρ€Π°Π²Π΅ ΠΌΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠΈ ΡΠ²Π΅Ρ‚ΠΎΠ»ΡŽΠ±ΠΈΠ²ΠΎΠΉ (2,13 % ΠΈ 6,44 % соотвСтствСнно). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π‘Π₯ ΠΈ Π’Π‘Π₯ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с достовСрными ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ установлСн состав моносахаров. Π’ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚Π°Ρ… Π’Π ΠŸΠ‘ Ρ‚Ρ€Π°Π²Ρ‹ Π²ΠΈΠ΄ΠΎΠ² Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ° ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π° глюкоза ΠΈ Π°Ρ€Π°Π±ΠΈΠ½ΠΎΠ·Π°. ΠœΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ состав ΠŸΠ’ исслСдуСмого ΡΡ‹Ρ€ΡŒΡ прСдставлСн глюкозой, Π°Ρ€Π°Π±ΠΈΠ½ΠΎΠ·ΠΎΠΉ ΠΈ Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΎΠΉ. Π’ Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚Π°Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π“Π¦ А ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½Π° глюкоза, Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Π°, ксилоза; Π²ΠΎ Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΈ Π“Π¦ Π‘ – глюкоза, Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Π°, Π°Ρ€Π°Π±ΠΈΠ½ΠΎΠ·Π°, ксилоза, Ρ€Π°ΠΌΠ½ΠΎΠ·Π°, Π³Π»ΡŽΠΊΡƒΡ€ΠΎΠ½ΠΎΠ²Π°Ρ ΠΈ галактуроновая кислоты. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π’ΠΏΠ΅Ρ€Π²Ρ‹Π΅ Π²Ρ‹Π΄Π΅Π»Π΅Π½Ρ‹ полисахаридныС комплСксы ΠΈΠ· 6 Π²ΠΈΠ΄ΠΎΠ² Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ°, Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Π½Ρ‹Ρ… ΠΈΠ· 8 мСст произрастания. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π‘Π₯ ΠΈ Π’Π‘Π₯ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с достовСрными ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ моносахаридов Π² исслСдуСмых Π³ΠΈΠ΄Ρ€ΠΎΠ»ΠΈΠ·Π°Ρ‚Π°Ρ… Ρ„Ρ€Π°ΠΊΡ†ΠΈΠΉ Π’Π ΠŸΠ‘, ΠŸΠ’, Π“Π¦ А ΠΈ Π“Π¦ Π‘ Ρ‚Ρ€Π°Π²Ρ‹ Π²ΠΈΠ΄ΠΎΠ² Ρ€ΠΎΠ΄Π° ΠœΠ°Π½ΠΆΠ΅Ρ‚ΠΊΠ°, растущих Π½Π° Ρ‚Π΅Ρ€Ρ€ΠΈΡ‚ΠΎΡ€ΠΈΠΈ ΠŸΡ€ΠΈΠΊΠ°Ρ€ΠΏΠ°Ρ‚ΡŒΡ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΉ состав сахаров. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΈΠΌΠ΅ΡŽΡ‚ практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ для дальнСйшСго изучСния фармакологичСской активности исслСдуСмого ΡΡ‹Ρ€ΡŒΡ ΠΈ ΠΌΠΎΠ³ΡƒΡ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ контроля качСства Π½Π° лСкарствСнноС Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΡΡ‹Ρ€ΡŒΠ΅ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΠ· Π½Π΅Π³ΠΎ субстанции.  Π£ Ρ„Π°Ρ€ΠΌΠ°Ρ†Π΅Π²Ρ‚ΠΈΡ‡Π½Ρ–ΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ†Ρ– Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚ΠΎΠ²ΡƒΡŽΡ‚ΡŒ Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΡ– засоби рослинного походТСння, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΡΡ‚ΡŒ полісахариди, ΠΎΡΠΊΡ–Π»ΡŒΠΊΠΈ Ρ†Ρ– ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΈ Π²ΠΈΡΠ²Π»ΡΡŽΡ‚ΡŒ ΡˆΠΈΡ€ΠΎΠΊΠΈΠΉ спСктр Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності. Π’Π°ΠΆΠ»ΠΈΠ²Π΅ Π½Π°ΡƒΠΊΠΎΠ²ΠΎ-ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ значСння ΠΌΠ°ΡŽΡ‚ΡŒ Π²ΠΈΠ΄ΠΈ Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ (Alchemilla L.) Ρ€ΠΎΠ΄ΠΈΠ½ΠΈ Π ΠΎΠ·ΠΎΠ²Ρ– (Rosaceae), які Π²ΠΌΡ–Ρ‰ΡƒΡŽΡ‚ΡŒ Ρ€Ρ–Π·Π½Ρ– Π³Ρ€ΡƒΠΏΠΈ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ (БАР), сСрСд яких сполуки Ρ„Π΅Π½ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ походТСння Ρ‚Π° полісахариди. Π’Ρ–Π΄ΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Ρƒ Π»Ρ–Ρ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΈΡ… Π΄ΠΆΠ΅Ρ€Π΅Π»Π°Ρ… Ρ–Π½Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— ΠΏΡ€ΠΎ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ вміст полісахаридів Ρƒ Π·Π°Π·Π½Π°Ρ‡Π΅Π½Ρ–ΠΉ сировині Π·ΡƒΠΌΠΎΠ²Π»ΡŽΡ” Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ провСдСння Π΄ΠΎΡΠ»Ρ–Π΄ΠΆΠ΅Π½ΡŒ Ρƒ Ρ†ΡŒΠΎΠΌΡƒ напрямі. ΠœΠ΅Ρ‚ΠΎΡŽ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ Π±ΡƒΠ»ΠΎ виділСння Ρ‚Π° дослідТСння полісахаридного складу Ρ‚Ρ€Π°Π²ΠΈ 6 Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ, які Π·Ρ€ΠΎΡΡ‚Π°ΡŽΡ‚ΡŒ Π½Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠŸΡ€ΠΈΠΊΠ°Ρ€ΠΏΠ°Ρ‚Ρ‚Ρ. ΠœΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»ΠΈ Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈ. Для виділСння полісахаридних Ρ„Ρ€Π°ΠΊΡ†Ρ–ΠΉ Ρ– дослідТСння Ρ—Ρ…Π½ΡŒΠΎΠ³ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ складу Π±ΡƒΠ»ΠΎ використано Ρ‚Ρ€Π°Π²Ρƒ 6 Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ (ΠΏΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ (ΠΏ.) віялоподібний, ΠΏ. зарубчастий, ΠΏ. ΡΠ²Ρ–Ρ‚Π»ΠΎΠ»ΡŽΠ±ΠΈΠ²ΠΈΠΉ, ΠΏ. дрібнозубчастий, ΠΏ. ΠΏΡ€ΠΈΡ‚ΡƒΠΏΠ»Π΅Π½ΠΈΠΉ, ΠΏ. Ρ‚ΡƒΡ€ΠΊΡƒΠ»ΡŒΡΡŒΠΊΠΈΠΉ), Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½Ρƒ Ρƒ Ρ„Π°Π·Ρƒ масового цвітіння Π² Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅Π³Ρ–ΠΎΠ½Π°Ρ… Π†Π²Π°Π½ΠΎ-Π€Ρ€Π°Π½ΠΊΡ–Π²ΡΡŒΠΊΠΎΡ— області протягом 2020-2021 Ρ€Ρ€. ΠšΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ вміст Ρ„Ρ€Π°ΠΊΡ†Ρ–ΠΉ полісахаридів Ρƒ дослідТуваній сировині Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π³Ρ€Π°Π²Ρ–ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ після послідовного Скстрагування сировини водою ΠΎΡ‡ΠΈΡ‰Π΅Π½ΠΎΡŽ Π , Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΎΠΌ хлористоводнСвої кислоти Ρ‚Π° Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ΠΎΠΌ Π½Π°Ρ‚Ρ€Ρ–ΡŽ гідроксиду Π· подальшим осадТСнням 96 % Π΅Ρ‚Π°Π½ΠΎΠ»ΠΎΠΌ P. Якісний ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΈΠΉ склад полісахаридів Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ висхідної ΠΏΠ°ΠΏΠ΅Ρ€ΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ— (ПΠ₯) Ρ‚Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ‚ΠΎΠ½ΠΊΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ— (Π’Π¨Π₯) Ρƒ Ρ€Ρ–Π·Π½ΠΈΡ… систСмах Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΠΊΡ–Π², ΠΏΠΎΡ€Ρ–Π²Π½ΡŽΡŽΡ‡ΠΈ Π· достовірними Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΡŒΠ½ΠΈΡ… Ρ– кислих ΠΌΠΎΠ½ΠΎΡ†ΡƒΠΊΡ€Ρ–Π². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Ρ‚Π° Ρ—Ρ… обговорСння. ВиявлСно, Ρ‰ΠΎ Ρƒ дослідТуваних Π·Ρ€Π°Π·ΠΊΠ°Ρ… Ρ‚Ρ€Π°Π²ΠΈ загальний вміст полісахаридних Ρ„Ρ€Π°ΠΊΡ†Ρ–ΠΉ коливався Π²Ρ–Π΄ 7,73 % Π΄ΠΎ 15,35 % Π·Π°Π»Π΅ΠΆΠ½ΠΎ Π²Ρ–Π΄ Π²ΠΈΠ΄Ρƒ приворотня. Π’ΠΈΡ…Ρ–Π΄ Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ·Ρ‡ΠΈΠ½Π½ΠΈΡ… полісахаридів (Π’Π ΠŸΠ‘) складав 2,62-5,49 %, ΠΏΠ΅ΠΊΡ‚ΠΈΠ½ΠΎΠ²ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ (ПР) – 1,41-2,13 %, Π³Π΅ΠΌΡ–Ρ†Π΅Π»ΡŽΠ»ΠΎΠ·ΠΈ (Π“Π¦) А – 0,45-2,96 %, Π“Π¦ Π‘ – 2,51-6,44 %. ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρƒ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π’Π ΠŸΠ‘ Ρ– Π“Π¦ А спостСрігали Π² Ρ‚Ρ€Π°Π²Ρ– приворотня Ρ‚ΡƒΡ€ΠΊΡƒΠ»ΡŒΡΡŒΠΊΠΎΠ³ΠΎ (5,49 % Ρ‚Π° 2,96 % Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ), Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠ΅ ПР Ρ‚Π° Π“Π¦ Π‘ Π±ΡƒΠ»ΠΎ виявлСно Π² Ρ‚Ρ€Π°Π²Ρ– приворотня ΡΠ²Ρ–Ρ‚Π»ΠΎΠ»ΡŽΠ±ΠΈΠ²ΠΎΠ³ΠΎ (2,13 % Ρ‚Π° 6,44 % Π²Ρ–Π΄ΠΏΠΎΠ²Ρ–Π΄Π½ΠΎ). ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ПΠ₯ Ρ‚Π° Π’Π¨Π₯ ΡˆΠ»ΡΡ…ΠΎΠΌ порівняння Π· достовірними Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ склад ΠΌΠΎΠ½ΠΎ-Ρ†ΡƒΠΊΡ€Ρ–Π². Π£ Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Π°Ρ‚Π°Ρ… Π’Π ΠŸΠ‘ Ρ‚Ρ€Π°Π²ΠΈ Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎ Π³Π»ΡŽΠΊΠΎΠ·Ρƒ Ρ‚Π° Π°Ρ€Π°Π±Ρ–Π½ΠΎΠ·Ρƒ. ΠœΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΈΠΉ склад ПР дослідТуваної сировини прСдставлСно глюкозою, Π°Ρ€Π°Π±Ρ–Π½ΠΎΠ·ΠΎΡŽ Ρ‚Π° Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·ΠΎΡŽ. Π£ Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Π°Ρ‚Π°Ρ… Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— Π“Π¦ А виявлСно Π³Π»ΡŽΠΊΠΎΠ·Ρƒ, Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Ρƒ, ксилозу; Ρƒ Ρ„Ρ€Π°ΠΊΡ†Ρ–Ρ— Π“Π¦ Π‘ – Π³Π»ΡŽΠΊΠΎΠ·Ρƒ, Π³Π°Π»Π°ΠΊΡ‚ΠΎΠ·Ρƒ, Π°Ρ€Π°Π±Ρ–Π½ΠΎΠ·Ρƒ, ксилозу, Ρ€Π°ΠΌΠ½ΠΎΠ·Ρƒ, Π³Π»ΡŽΠΊΡƒΡ€ΠΎΠ½ΠΎΠ²Ρƒ Ρ‚Π° Π³Π°Π»Π°ΠΊΡ‚ΡƒΡ€ΠΎΠ½ΠΎΠ²Ρƒ кислоти. Висновки. Π£ΠΏΠ΅Ρ€ΡˆΠ΅ Π²ΠΈΠ΄Ρ–Π»Π΅Π½ΠΎ полісахаридні комплСкси Π· 6 Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ, Π·Π°Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΡ… Ρƒ Ρ€Ρ–Π·Π½ΠΈΡ… Ρ€Π΅Π³Ρ–ΠΎΠ½Π°Ρ… Π†Π²Π°Π½ΠΎ-Π€Ρ€Π°Π½ΠΊΡ–Π²ΡΡŒΠΊΠΎΡ— області. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ПΠ₯ Ρ‚Π° Π’Π¨Π₯ ΡˆΠ»ΡΡ…ΠΎΠΌ порівняння Π· достовірними Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ моносахаридів Ρƒ дослідТуваних Π³Ρ–Π΄Ρ€ΠΎΠ»Ρ–Π·Π°Ρ‚Π°Ρ… Ρ„Ρ€Π°ΠΊΡ†Ρ–ΠΉ Π’Π ΠŸΠ‘, ПР Ρ‚Π° Π“Π¦ А Ρ– Π“Π¦ Π‘ Ρ‚Ρ€Π°Π²ΠΈ Π²ΠΈΠ΄Ρ–Π² Ρ€ΠΎΠ΄Ρƒ ΠŸΡ€ΠΈΠ²ΠΎΡ€ΠΎΡ‚Π΅Π½ΡŒ, які Π·Ρ€ΠΎΡΡ‚Π°ΡŽΡ‚ΡŒ Π½Π° Ρ‚Π΅Ρ€ΠΈΡ‚ΠΎΡ€Ρ–Ρ— ΠŸΡ€ΠΈΠΊΠ°Ρ€ΠΏΠ°Ρ‚Ρ‚Ρ, Π²ΠΈΠ·Π½Π°Ρ‡Π΅Π½ΠΎ ΠΌΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΈΠΉ склад Ρ†ΡƒΠΊΡ€Ρ–Π². ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ дослідТСння ΠΌΠ°ΡŽΡ‚ΡŒ ΠΏΡ€Π°ΠΊΡ‚ΠΈΡ‡Π½Π΅ значСння для подальшого вивчСння Ρ„Π°Ρ€ΠΌΠ°ΠΊΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— активності дослідТуваної сировини Ρ‚Π° ΠΌΠΎΠΆΡƒΡ‚ΡŒ Π±ΡƒΡ‚ΠΈ використані для розроблСння ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ якості Π½Π° Π»Ρ–ΠΊΠ°Ρ€ΡΡŒΠΊΡƒ рослинну сировину ΠΉ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π· Π½Π΅Ρ— субстанції

    I–II Loop Structural Determinants in the Gating and Surface Expression of Low Voltage-Activated Calcium Channels

    Get PDF
    The intracellular loops that interlink the four transmembrane domains of Ca2+- and Na+-channels (Cav, Nav) have critical roles in numerous forms of channel regulation. In particular, the intracellular loop that joins repeats I and II (I–II loop) in high voltage-activated (HVA) Ca2+ channels possesses the binding site for CavΞ² subunits and plays significant roles in channel function, including trafficking the Ξ±1 subunits of HVA channels to the plasma membrane and channel gating. Although there is considerable divergence in the primary sequence of the I–II loop of Cav1/Cav2 HVA channels and Cav3 LVA/T-type channels, evidence for a regulatory role of the I–II loop in T-channel function has recently emerged for Cav3.2 channels. In order to provide a comprehensive view of the role this intracellular region may play in the gating and surface expression in Cav3 channels, we have performed a structure-function analysis of the I–II loop in Cav3.1 and Cav3.3 channels using selective deletion mutants. Here we show the first 60 amino acids of the loop (post IS6) are involved in Cav3.1 and Cav3.3 channel gating and kinetics, which establishes a conserved property of this locus for all Cav3 channels. In contrast to findings in Cav3.2, deletion of the central region of the I–II loop in Cav3.1 and Cav3.3 yielded a modest increase (+30%) and a reduction (βˆ’30%) in current density and surface expression, respectively. These experiments enrich our understanding of the structural determinants involved in Cav3 function by highlighting the unique role played by the intracellular I–II loop in Cav3.2 channel trafficking, and illustrating the prominent role of the gating brake in setting the slow and distinctive slow activation kinetics of Cav3.3

    FoxO and Stress Responses in the Cnidarian Hydra vulgaris

    Get PDF
    Background: In the face of changing environmental conditions, the mechanisms underlying stress responses in diverse organisms are of increasing interest. In vertebrates, Drosophila, and Caenorhabditis elegans, FoxO transcription factors mediate cellular responses to stress, including oxidative stress and dietary restriction. Although FoxO genes have been identified in early-arising animal lineages including sponges and cnidarians, little is known about their roles in these organisms. Methods/Principal Findings: We have examined the regulation of FoxO activity in members of the well-studied cnidarian genus Hydra. We find that Hydra FoxO is expressed at high levels in cells of the interstitial lineage, a cell lineage that includes multipotent stem cells that give rise to neurons, stinging cells, secretory cells and gametes. Using transgenic Hydra that express a FoxO-GFP fusion protein in cells of the interstitial lineage, we have determined that heat shock causes localization of the fusion protein to the nucleus. Our results also provide evidence that, as in bilaterian animals, Hydra FoxO activity is regulated by both Akt and JNK kinases. Conclusions: These findings imply that basic mechanisms of FoxO regulation arose before the evolution of bilaterians an

    Primary biliary cirrhosis

    Get PDF
    Primary biliary cirrhosis (PBC) is an immune-mediated chronic cholestatic liver disease with a slowly progressive course. Without treatment, most patients eventually develop fibrosis and cirrhosis of the liver and may need liver transplantation in the late stage of disease. PBC primarily affects women (female preponderance 9–10:1) with a prevalence of up to 1 in 1,000 women over 40Β years of age. Common symptoms of the disease are fatigue and pruritus, but most patients are asymptomatic at first presentation. The diagnosis is based on sustained elevation of serum markers of cholestasis, i.e., alkaline phosphatase and gamma-glutamyl transferase, and the presence of serum antimitochondrial antibodies directed against the E2 subunit of the pyruvate dehydrogenase complex. Histologically, PBC is characterized by florid bile duct lesions with damage to biliary epithelial cells, an often dense portal inflammatory infiltrate and progressive loss of small intrahepatic bile ducts. Although the insight into pathogenetic aspects of PBC has grown enormously during the recent decade and numerous genetic, environmental, and infectious factors have been disclosed which may contribute to the development of PBC, the precise pathogenesis remains enigmatic. Ursodeoxycholic acid (UDCA) is currently the only FDA-approved medical treatment for PBC. When administered at adequate doses of 13–15Β mg/kg/day, up to two out of three patients with PBC may have a normal life expectancy without additional therapeutic measures. The mode of action of UDCA is still under discussion, but stimulation of impaired hepatocellular and cholangiocellular secretion, detoxification of bile, and antiapoptotic effects may represent key mechanisms. One out of three patients does not adequately respond to UDCA therapy and may need additional medical therapy and/or liver transplantation. This review summarizes current knowledge on the clinical, diagnostic, pathogenetic, and therapeutic aspects of PBC
    • …
    corecore